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Abstract 

The aim of this work is to present the electric motor as a model system in nonlinear dynamics. To this end, I derive 

the motor’s equations of motion starting from classical electromagnetism, and give two examples of results which 

can be obtained by solving these equations using formal nonlinear dynamical procedures. The first of these 

examples deals with synchronization in coupled permanent magnet motors, while the second shows stability of an 

induction motor driven by an electronic commutator. 

*     *     *     *     * 
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Introduction 

“Figaro la, Figaro qua, Figaro su, Figaro giu ...... Sono il factotum della citta.” 

– The Barber of Seville 

The electric motor is without doubt the most ubiquitous machine in today’s technologically advanced world. From 

the milliwatt level motors in hard disks and cd drives to the ten-thousand horsepower giants which propel ships; 

from the ceiling fan where you just close a circuit and the thing runs to the locomotive where a computer changes 

the voltage several thousand times per second to achieve the best acceleration, electric motors are the factotum of 

modern industry and technology. As per one author’s estimate [1], nearly two-thirds of all the electric power 

generated in the United States of America finds its way into an electric motor. The original inventor of the motor 

(a dc motor) was none other than Michael Faraday, one of the founders of classical electromagnetism. The ac 

motor (which has wider applicability today than the dc motor) was invented by another great physicist, Nikola 

Tesla, after whom the unit of magnetic field is named. And yet, the techniques in use today for analysing this 

machine are quite far removed from the original physical approach visualized by the pioneers. 

The subfield in physics called nonlinear dynamics and chaos theory is tailormade to analyse the behaviour of 

natural as well as artificial dynamical systems. Examples of the latter are generally taken from engineering, for 

example the Kapitsa pendulum (model of vibrating machinery), the van der Pol oscillator (model of an electric 

circuit) and the neural network (artificial imitation of a brain). The simple circuit [2] consisting of an inductor, a 

resistor, two capacitors and a negative-resistivity diode, invented by the electrical engineer Leon Chua, did not 

take long to bridge the gap and become a staple of the physicist’s diet. But a physics-based analysis of electric 

motors is today a rarity. 

Yet it is worth noting that the basic principles behind the operation of motors are still described in 

electromagnetic terms – Ampere’s law to explain how currents produce magnetic fields, Lenz’s law to account for 

induced emf and F l Bi= ×
�� �

 (where i is the current) to demonstrate why the rotor develops a torque. What is 

absent is the quantitative development of these fundamental laws – when plots and numbers are the requirement, 

the approach changes from the electromagnetic one to the equivalent circuit model. The advantage of this model 

is that it enables a very simple description of the steady state operating characteristics. When it comes to dynamic 

modeling however, the theory, which now assumes a two-reaction form, is much more complex and because of 

this, in the words of Krishnan, “[the dynamic model] is considered difficult and is avoided by many practising 

engineers”.  

In the first part of this work, my aim is to construct the dynamic motor model using the physically transparent 

electromagnetic principles as the starting point. We will see that the equations of motion are obtained in a 

relatively few number of logically connected steps. In the second part, I will attack the dynamical equations using 

the standard tools of nonlinear dynamics and chaos theory and use this formalism to derive two results. Since I am 

writing this article for a wide audience, I will include a largish amount of introductory material, and readers who 

are familiar with it can skip the respective passages. The outline of this paper is as follows. In Section 1 I will 

briefly review the motoring principle and then give a detailed account of the modeling of a general motor. In 

Section 2 I will demonstrate synchronization in an array of coupled permanent magnet motors and stabilizing 

dynamics of an induction motor driven by an electronic commutator. I will then finish the paper with a 

Conclusion. 

* 

1. Modeling the electric motor 

“When you read you begin with A-B-C, when you sing you begin with do-re-mi ..... when I write I begin with i B×
��

.” 

– Adapted from The Sound of Music 

The aim of this Section is to present a model of a general motor structure, starting from classical electromagnetic 

theory. Once the general equation is derived, the forms corresponding to various kinds of motors and drives can 
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(where the torque on it is zero), the commutator causes the current in it to flip direction so that the torque ne
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Figure 1a: Schematic representation of a dc motor. This image is taken from 
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this setup should show a continuous positive torque output if I can flip the direction of the stator 
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This completes the basic description of the stator and rotor structure. We are now almost ready to start the 

analysis; before going for it there is just one other thing we need to look at and that is the motor drive. One 

possible way to run the motor is of course to connect the stator to a three-phase voltage supply. Indeed, that is just 

what is done in a lot of situations such as fans, pumps and crude grade lathes and cutters. This arrangement 

however has poor dynamic characteristics, which make it unsuitable for more demanding applications such as 

precision machines and railway locomotives. In such situations, the motor is connected to an inverter which 

separately regulates the voltage or current applied across each phase. The behaviour of the inverter is governed 

by an appropriate control algorithm; the inverter together with the controller is called the motor drive. 

There are two main classes of inverters – 

• Voltage source : These inverters regulate the voltage applied across each phase. 

• Current source : These inverters regulate the current flowing through each phase.  

Within each type there are again two main sub-categories – 

• Discrete inverter : Can only produce a set of discrete voltage/current values. Among these the simplest are 

two-level inverters which can only turn each phase ON at a constant voltage/current or OFF. (Despite their 

simplicity, they are anything but worthy of ridicule – one of the best motor control algorithms [8] uses a 

two-level voltage source.) 

• Continuous inverter : Can produce any value of voltage/current (upto a certain limit). A common example 

is one which produces three phase voltages at any arbitrary frequency (called a variable frequency drive or 

VFD).  

So far as the control algorithm is concerned, the study of that is meaningless at this point since we do not yet have 

any idea of the dynamic behaviour of the motor. More details on motor drives may be found in the comprehensive 

text [1] by Krishnan. And while I am at it, I would like to mention that the substitution ‘driver’ for ‘drive’, though 

popular, is incorrect. 

 

1.3  The Maxwellian bicylinder model 

§1. Space phasors and the Park transformation. I am now in a position to start modelling the motor. Assuming 

that the rotor and stator are coaxial cylinders, I can expand any quantity defined on either of them (say the stator 

voltage or the rotor current) in a Fourier series [9]. Clearly, the fundamental harmonic of this series will be of the 

form cosnθ and sinnθ where 2n is the polarity. I will now assume that only this harmonic is present; since higher 

harmonics are detrimental to performance, stators and rotors are generally designed to minimize their role and 

this assumption causes only a small error. Thus, I can write any quantity F defined on either cylinder as 

F=Pcosnθ+Qsinnθ; since the two basis functions are linearly independent, there is no question of further 

simplification. Here we see the first connection between this model and the circuit model – that model talks about 

two sets of windings on both stator and rotor and these two windings correspond to the cosine and sine 

components.  

The next step is to cast the problem in complex notation [10]. I will express the above F in the form F=P+jQ 

where j denotes the imaginary unit. The complex F is called a space phasor or space vector (usually abbreviated to 

plain ‘vector’) and the motor model in terms of these variables is called the space phasor model. Further, the real 

part of a phasor is referred to as the direct or ‘d’ component and the imaginary part is called the quadrature or ‘q’ 

component. It may be noted that a space vector of this form is by no means a vector quantity in actual space – for 

example the voltage which is eminently a scalar quantity in real space can assume a sinusoidal distribution on the 

stator and thus become a space phasor. To avoid confusion, in this paper all space phasors will be denoted in bold 

face while actual vector quantities (such as magnetic field) will be denoted by overhead arrows. 

Now suppose I am given a three phase stator and that I am given the voltages Va, Vb and Vc applied to the three 

phases – how will I write this in space phasor form ? To solve this, I first note that for a 2-pole motor (n=1) the 

space phasor representation of any distribution points from the minimum of the distribution to the maximum and 

has a magnitude proportional to the amplitude of the distribution. Thus, if a voltage Va is applied on phase a on the 

stator of Fig. 1d and the other two phases are idle, then the voltage vector will be some constant times Vaexp(j0). 
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Likewise if only phase c is active, then the vector will the same constant times Vcexpj(2π/3) while if only phase b is 

active it will be the constant times Vbexpj(4π/3). Invoking the superposition principle and using a Fourier 

expansion to calculate the constant, I get for the stator of Fig. 1d 

 ( )j2 3 j4 32 / /e ea c bV V Vπ π

π
= + +V    . (101) 

This is called the Park transformation [11]. Note that the coefficient 2/π obtains from assuming that the phase 

windings span the entire stator; it will get modified if the geometrical layout of the windings is different. It also 

follows from the geometry that for a 2n-pole motor, the 2π/3 and 4π/3 in the exponents will be replaced by 2π/3n 

and 4π/3n. Using this transformation I can get the voltage vector corresponding to any combination of phase 

voltages. Two examples are illustrative. For a three-phase two level inverter, each of the three phase voltages can 

be either V0 or zero. Assuming polarity 2 and substituting all eight possibilities into (101) we see that this inverter 

can produce a total of seven voltage vectors i.e. 

 02 2
j 0 1 2 3 4 5

6
exp ; , , , , ,

V k
k

π
π

 = = 
 

V    , (102) 

and the zero vector V=0. The second example features three phase sinusoidal voltages 

 

( )
( )

0

0

0

2 3

4 3

cos

cos /

cos /

a

b

c

V V t

V V t

V V t

π
π

= Ω

= Ω +

= Ω +

   . (103) 

Writing the cosine as a sum of imaginary exponentials, substituting (103) into (101) and simplifying, I have 

 ( )03
jexp

V
V t

π
= Ω    . (104) 

From the definition of space phasors, expj(Ωt) denotes cos(θ-Ωt) which is in fact a rotating wave. This shows that 

three phase voltages applied to the three phase stator create a rotating voltage vector, which enables the creation 

of a rotating magnetic field. This completes the discussion on space phasor notation and I now return to the 

problem of constructing the motor’s dynamic model.  

§2. Currents, vector potentials and magnetic fields. The quantities relevant for the problem are not hard to 

seek. There are the rotor and stator applied voltages and the currents flowing through them. Voltage is of course a 

scalar in real space; since the currents are constrained by the geometry to flow in the z direction (i.e. along the 

cylinder axis) they too become scalars. These currents give rise to magnetic fields B
�

. These are all vectors in real 

space so I must deal with three components of each of them, and it appears that the calculation is going to become 

extremely complicated. 

Two assumptions save the day at this point. The first is that the cylinder height is infinite compared to its radius. 

This immediately makes the problem two-dimensional with the z direction becoming redundant. The second 

assumption is that the rotor and stator conductors are thin compared to their radii. This means that the currents 

in these elements can be treated as surface currents i.e. currents per unit length. The magnetic fields will have a 

radial (ρ) and a tangential (θ) component. Now there are two physical steps in which B
�

 plays a role – one is in 

inducing emfs in the rotor through motional effect and the other is in producing the torque on the rotor through 

the l Bi ×
� �

 effect. It is easy to see that in both these cases, it is the radial component Bρ which is relevant. Hence B 

too may be treated as a scalar in real space. 

Now, calculating the vector potential and magnetic field for a sinusoidally distributed surface current on a 

cylinder is a standard exercise in electromagnetism [12]. The first step is to write B A= ∇×
��

 where A
�

 is the vector 

potential; I then take its curl. From Ampere’s law, this equals 0 Jµ
�

 where J
�

is the current density vector; on the 

other side of the equation I can always make A
�

 divergenceless by a suitable gauge transformation and thus 

reduce the double curl to a negative Laplacian. This is a Poisson equation; now since there is no current density in 

bulk space, it further reduces to a Laplace equation. This is solved using separation of variables and exploiting the 

fact that at any current-carrying surface, the tangential component of B
�

 undergoes a jump discontinuity 

proportional to the surface current. In the subsequent discussion only the result and not the formalism behind 
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this calculation will be used so I omit any further technical details and directly quote the answers. For a surface 

current 0 ˆK cosK nθ= z
�

 on the surface of a single cylinder of radius x, the vector potential is 

 
0 0

12
cos

n

z n

K
A n

nx

µ ρ θ−=    , (105) 

inside the cylinder and  

 1
0 0

2
cos

n

z n

K x
A n

n

µ θ
ρ

+

=    , (106) 

outside it. Taking the curl yields  

 
( )

1
0 0

12
sin

n

n

K
B n

x
ρ

µ ρ θ
−

−= −    , (107) 

inside the cylinder and 

 
( )

1
0 0

12
sin

n

n

K x
B nρ

µ θ
ρ

+

+= −    , (108) 

outside it. In space phasor terms these can be written as follows : for a surface current phasor K0, the vector 

potential phasor is 

 
012

inside

n
o

nnx

µ ρ
−=A K    , (109a) 

 1
0

0
2

outside

n

n

x

n

µ
ρ

+

=A K    , (109b) 

and the magnetic field is 

 1
0

01j
2

inside

n

nx

µ ρ −

−= −B K    , (110a) 

 1
0

01
j

2
outside

n

n

xµ
ρ

+

+= −B K    . (110b) 

Note that the conversion from surface current K to current i is easy – the total current in the rotor or stator is just 

the surface current multiplied by the circumferential length of the windings. The relevant length is that of one 

branch of one phase winding for the stator and 1/2n of the circumference of a squirrel cage rotor. Because the 

surface currents are of fundamental importance in the modeling, I will keep these rather than the actual currents 

in the eventual dynamical equation. For convenience however I will refer to the surface currents as just ‘currents’ 

in the subsequent discussion. 

At this point I am ready to introduce the MBC model. Let the rotor have a radius r and the stator have a radius R 

(since the rotor generally lies inside the stator I will take r<R). Let the conductivities of the wires/bars in the 

rotor and stator be σ and σ’ respectively, and let the thicknesses of these conductors be b and b’ (these symbols 

are also doing duty as phase names, but there should be no confusion). It is reasonable to assume that both rotor 

and stator cores are made of the same magnetic material, which is linear with permeability µc. When a current in 

any element produces a magnetic field in that element, this will be the relevant permeability. When a current in 

any element produces a field in the other element however, the effective permeability will be reduced because of 

the air gap between them. Let this modified permeability be µg where µg<µc. Finally, because the conductors along 

the circumference of the rotor and stator are separated by a gap, I define a conductor separation factor c and c’ as 

the ratio of the angular span of one conductor to the total angular span between the centres of two adjacent 

conductors. Finally, I let the angular velocity of rotation of the rotor about its axis be ω in the anticlockwise 

(positive) direction. 

Now suppose the rotor carries a current K1 which is a function of time. Since the typical size of a motor is of the 

order of 1m and the typical frequency is of order 100 Hz, the product gives a speed much smaller than that of light 

and the magnetostatic approximation is valid. Then the vector potential created by K1 at the rotor surface will be 

 
1 12,

c
r

r

n

µ=A K    , (111) 
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while the potential at the stator surface will be 

 11

1 1 122,

nn
g g c

s n
c

r Rr

R nnR

µ µ µ
µ

++
 = =  
 

A K K    . (112) 

In the above two equations, the subscripts r and s denote the rotor and stator respectively; the notation As,1 means 

A at the stator surface on account of K1. The electric field induced in the stator follows as  

E=-dA/dt from Faraday’s law; I multiply this field by the conductivity to get the two-dimensional current density 

and then multiply by the conductor thickness to get the surface current. Finally I scale this down by the conductor 

separation factor to account for the fact that the current is in fact zero along part of the circumference (where 

there is no conductor). Combining these, I get an induced stator current 

 1

1 12,

' ' ' d

d

n
g c

s
c

c Rbr

R n t

µ µ σ
µ

+
   = −   
   

K K    . (113) 

I can repeat this process for the rotor; there is however an extra term to be taken care of here. This arises because 

the rotor conductors are moving through a magnetic field, and an emf E v B= ×
� �

�

 is induced over and above the  

–dA/dt effect. Viewing from the stator frame, the speed of motion of the rotor conductors is ωr which using (110) 

for B and converting electric field to surface current yields 

 
1 1j

2,

d

d
c

r

c rb
n

n t

µ σ ω = − + 
 

K K    . (114) 

Thus Kr,1 is a correctional term on the original K1; this ‘correctional’ approach can in fact be used to eventually get 

the dynamic model [13] although I will follow a shorter procedure here. As an aside I would like to mention that if 

I view the dynamics from a frame rotating at arbitrary angular velocity ωe with respect to the stator then the 

terms -d/dt and -d/dt+jnω in (113) and (114) will get replaced by -d/dt-jnωe and -d/dt+jn(ω-ωe) respectively. 

This procedure, called arbitrary frames transformation, is useful in some cases though I will not employ it in this 

paper. 

In a like manner I can calculate what will happen if the stator carries a current K2 which is a function of time. 

Repeating the steps I have 

 
2 22,

' ' ' d

d
c

s

c Rb

n t

µ σ  = − 
 

K K    , (115) 

and 

 1

2 2j
2,

d

d

n
g c

r
c

c rbr
n

R n t

µ µ σ ω
µ

−
   = − +   
   

K K    . (116) 

It is readily seen that terms of the form cµcσrb/2n are appearing repeatedly in these expressions. This quantity has 

the dimension of time and I make the variable definitions 

 

2
c

r

c rb

n

µ στ =    , (117a) 

 

2

' ' 'c
s

c Rb

n

µ στ =    . (117b) 

In fact, as will be apparent from the subsequent development, τr and τs are the time constants of the rotor and 

stator. It is also convenient to make the definitions 

 1

1

n
g

c

r

R

µ
δ

µ

−
 =  
 

   , (118a) 

 1

2

n
g

c

r

R

µ
δ

µ

+
 =  
 

   , (118b) 

and in terms of these quantities I can rewrite (113)-(116) as 

 
1 1j,

d

d
r r n

t
τ ω = − + 
 

K K    , (119a) 



 
10 

 

 
1 2 1,

d

d
s s

t
δ τ  = − 

 
K K    , (119b) 

 
2 1 2j,

d

d
r r n

t
δ τ ω = − + 

 
K K    , (119c) 

 
2 2,

d

d
s s

t
τ  = − 
 

K K    . (119d) 

With this I have assembled all the bricks and mortar needed to get the dynamic model. The only task left is 

actually building the house. While in my original works [13,14] I had done this floor by tedious floor, this time I 

will give an argument which will take me almost directly to the roof. 

§3. The Voltage-current relationship. The first thing to get clear is what we are actually looking for. A dynamic 

model of an electrical device is generally a relation between the voltage applied on the device and the current 

developed in it. This is true for LCR circuits, devices like diodes and transistors and also more complex circuits like 

Chua circuits. Here too I will try to search for such a relation between the voltages Ur and Us which I apply on the 

rotor and stator and the currents Kr and Ks which flow in them. Now in all these equations [(111) onwards] I have 

only talked about current and never voltage. But a voltage term is easy to see in the steps leading to (113) from 

(112); instead of multiplying the E by conductivity etc. I could have just multiplied it by the total length of the 

stator circuit to get the voltage Ws,1 (‘U’ is the applied voltage and ‘V’ has a more prominent role a little later) 

induced in the stator on account of K1. This voltage is of course proportional to Ks,1 through some constant which I 

call Z’.  If L’ be the length of the stator circuit (note that L’ is the total length of winding while l’ denotes the 

circumferential span), then ' '/ ' 'Z L bσ= . Analogously, the voltage across the rotor is proportional to the rotor 

current through Z=L/σb and I could have written (119a,b) in terms of Wr,1 and Wr,2 rather than Kr,1 and Kr,2. This 

Z term is just a dimensional constant which converts current to voltage; what we have to be careful about is what 

physically constitutes a current and what physically constitutes a voltage. 

Suppose the net current in the rotor is given as Kr – I don’t know how it has appeared but it has. I now want to 

find the voltage induced across the rotor and stator on its account. This of course follows from (119a,b) with an 

extra Z term : 

 
j,

d

d
r r r rZ n

t
τ ω = − + 
 

W K    , (120a) 

 
2,

d
'

d
s r s rZ

t
δ τ  = − 

 
W K    . (120b) 

Prima facie this may appear like a repeat of (119); while this is mathematically true, physically it has a vastly 

different interpretation. Equation (119) was merely describing the stator and rotor currents set up by some pre-

existing K1 in the rotor while (120) is actually specifying the voltages induced across the rotor and stator on 

account of the total current Kr in the rotor. In a like manner I can write down the voltages induced across the 

rotor and stator on account of the net stator current Ks as 

 
1 j,

d

d
r s r sZ n

t
δ τ ω = − + 

 
W K    , (121a) 

 
,

d
'

d
s s s sZ

t
τ  = − 
 

W K    . (121b) 

Now superpose; the total voltages Wr and Ws induced across rotor and stator are just the sum of the constituent 

parts i.e. 

 
, ,r r r r s= +W W W    , (122a) 

 , ,s s r s s= +W W W    . (122b) 

The last question to ask is : if I measure the voltages Xr and Xs across the rotor and stator with a voltmeter, what 

do I get ? The answer to this must be r rZ=X K  and 's sZ=X K . This follows from the fact that both the elements 

are linear conductors : if the current is Kr, the electric field must be Kr/σb and so the voltage must be KrL/σb, 

which is ZKr. But these measured voltages X have to be the superposition of the applied voltages U and the 

induced voltages W – there are no other sources of voltage. Using this I get 

 
r r r− =X W U    , (123a) 
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s s s− =X W U    . (123b) 

Finally, I use the definitions of X and get W in terms of K by substituting (120) and (121) into (122); the result is 

the voltage-current dynamics of the motor : 

 

1

2

1 j j

1

d d

d d

d d
' '

d d

r r
r r

s s

s s

Z n Z n
t t

Z Z
t t

τ ω δ τ ω

δ τ τ

     + − −               =         +  
  

K U

K U
   . (124) 

This is the desired relationship. As a final step I take out Z and Z’ from the LHS and define the applied voltage 

vectors /r r Z=V U  and / 's s Z=V U  and in terms of these I get 

 
1

2

1 j j

1

d d

d d

d d

d d

r r
r r

s s
s s

n n
t t

t t

τ ω δ τ ω

δ τ τ

    + − −             =   
     +  

K V

K V
   . (125) 

 

§4. Newton’s law. The modeling however is still not complete. The rotor angular velocity ω appears as a 

parameter in (125) but actually it is a dynamical variable (obviously, since motors accelerate and decelerate). So 

my next task is to find the equation satisfied by ω. Fortunately, this is much easier to obtain than the voltage-

current dynamics. The torque of the motor follows from the good old l Bi ×
� �

; since the torque is on the rotor, I
�

 

clearly has to mean the rotor current and B
�

 has to mean the magnetic field at the rotor surface. This has 

contributions from both rotor and stator; however since an isolated spinning magnet cannot exert any torque on 

itself, the rotor field contribution to the torque must be zero. The contribution of the stator field at each point θ is 

proportional to ( ) ( ), dr s rB Kθ θ θ  and the total torque follows from integrating this over the entire cylinder. An 

identity in space phasor representations is 

 ( ) ( )
2

0
dF G

π
θ θ θ ∝ ⋅∫ F G    , (126) 

i.e. the integral of the product of two distributions is proportional to the dot product of their representative 

phasors, where the dot product is defined in the standard manner as the sum of the products of the respective 

direct and quadrature components. Using this and (110), the torque T of the motor emerges as 

 ( )jr sT C= ⋅ −K K    , (127) 

where C is a positive constant. Its value can be found by carefully tracking [14] the coefficients giving forces and 

torques; without showing the details I just quote it as 

 2
1

2
c r h

C
πµ δ=    . (128) 

This now enables me to write Newton’s law for the motor : given the moment of inertia J of the motor and load 

and the drag torque Γ, I have 

 ( )j
d

d
r sJ C

t

ω = ⋅ − −ΓK K    . (129) 

This completes the MBC model of the motor. It should be noted that these equations are in perfect agreement with 

the equivalent circuit dynamic models used by engineers. Equation (125) is fourth order (first order in each of 

two complex variables) while (129) is first order hence the resultant system is fifth order. It is highly nonlinear, on 

account of the product terms with ω in (125) and the current product in (129). As a final comment, I would like to 

mention that the form I have derived is independent of the type of motor. Nowhere in the actual modeling (§2 

onwards) have I mentioned any specific details regarding the motor construction. I did introduce the Park 

transformation for a three phase stator but I have not used that result at any step of the main derivation. The only 

thing I have used is that functions defined on the cylinder can be expanded in harmonics, hence (125) and (129) 

are applicable for any cylindrical motor. In the next Subsection I will show how the equations for various motor 

types can be obtained by trivial substitution into the general structure. 



 
12 

 

1.3  IM and PMSM models 

In this Subsection I will show the forms of (125) and (129) appropriate for IM and PMSM. The equation (129) will 

remain the same for all motors as it is perfectly general; (125) will depend on the type of motor and inverter. For 

IM, the rotor (Fig. 1eL) is just a short-circuited cylinder hence the voltage applied on it is zero. If the stator is 

connected to a voltage source inverter (VSI), the voltage-current equation reads 

 
1

2

1 j j
0

1

d d

d d

d d

d d

r r
r

s
s s

n n
t t

t t

τ ω δ τ ω

δ τ τ

    + − −             =   
    +  

K

K V
   , (130) 

in which the subscript ‘s’ on V is unnecessary. On the other hand, if the stator is driven by a current source 

inverter (CSI) then Ks becomes a known function of time. Hence the second line of (130) goes out and the first line 

gives 

 ( ) 1 11 j + j
d d

d d
r r r r r s r sn n

t t
τ τ ω δ τ δ τ ω+ − = −K K K K    . (131) 

This procedure immediately tells us how go about the PMSM model. The rotor of that motor is a permanent 

magnet; it may be assumed as having an ingrained and constant current distribution K0cosnθ in its own frame, 

which translates to a current K0cosn(θ-θr) in the stator frame where θr is the angle made by the rotor relative to 

stator-fixed axes. Clearly, dθr/dt=ω. Thus for the PMSM, ( )0 jexpr rK nθ=K  where K0 is a constant. The first line of 

(130) must go out, leaving behind 

 ( )2 0 j
d

exp
d

s s s s rK n n
t

τ δ τ ω θ+ = −K K V    . (132) 

These three equations are the common special cases of (125). 

A useful situation which is studied is the steady state torque-speed (T vs. ω) characteristics [7] under applied 

three phase sinusoidal voltages at fixed frequency Ω. These characteristics follow from setting ω to be constant 

and trying out ansatzes (...)expj(Ωt) for the currents in the dynamical equations. I will not dwell on the details of 

the procedure but will indicate the results. For IM, the torque is very low at low values of ω and increases with ω 

upto a certain critical speed which is slightly less than Ω. Thereafter it plummets sharply as ω increases further 

and becomes zero at ω=Ω. The quantity Ω-ω is called the slip frequency ε; at low ε the torque goes as ε while high 

ε it goes as 1/ε. PMSM on the other hand generates positive torque only for ω=Ω. The relevant quantity is the 

phase difference φ between the stator and rotor current waveforms; the torque goes as sinφ and φ is called the 

torque angle. 

In more sophisticated applications, the applied voltages/currents are not necessary sinusoidal but can have an 

arbitrary profile. The purpose of a motor control algorithm is in fact to select a proper function V(t) for a VSI or 

Ks(t) for a CSI which will result in smooth and high-performance operation of a motor. The control rule specifies 

the applied voltage/current as a function of time or of some of the motor parameters like induced stator voltage. 

Solving the motor equations with the control rule incorporated indicates the feasibility and quality of the strategy. 

One such solution has been proposed by Isao Takahashi and Toshihiko Noguchi [8] who are the inventors of direct 

torque control. Rather surprisingly this solution uses techniques which are quite different from the standard 

nonlinear dynamical tools. In the next Section I will propose two novel control algorithms and will use the 

nonlinear dynamic theory to prove their feasibility. 

* 

 

 

 

 


